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Abstract - In this paper we present a method for 
designing temperature compensated cavity resonators using 
shape memory alloys @MA’s). This paper gives a formula 
for the temperature drift of resonant frequency, which is 
valid for any conductor-loaded cavity regardless of its shape. 
This formula is combined with a field perturbation model 
and used to derive mechanical design constraints from a 
temperature drift constraint. Experimental results are given 
that confirm the feasibility of the proposed design approach. 

I. INTRODUCTION 

Temperature drift is an important consideration when 
designing RF filters. To minimize drift, expensive high- 
density materials such as invar are used to construct 
resonators. Other materials such as aluminum have more 
favorable electrical properties and lower density, but 
cannot be used because of high temperature drift. 

The unique properties of shape memory alloys @MA) 
can lx used to construct a tuning rod such that the field 
perturbation is dependant on temperature.. The constraints 
on the temperature drift of a resonator can be used to 
derive constraints on the mechanical temperature 
response of an SMA tuning rod. 

In this paper we propose using a spring biased SMA 
actuator spring to move a tuning rod inside a resonant 
cavity. This design can provide the tield perturbation 
required to compensate for the effects of temperature 
drift. Also, since this design is thermally actuated, there 
is no added power consumption. It is then possible to 
reduce temperature drift using a passive system while 
adding little mass to the resonator. 

II. SMA BEHAVIOR 

Shape memory alloys (SMA) are materials that can 
revert to a memorized shape when heated above some 
threshold. For nickel-titanium alloys, this shape change is 
the result of a phase transformation from martensite to 
austenite. If and SMA compression spring is constructed, 
and some bias force is applied (using a spring or a mass) 
the spring will compress at low temperature. As the 
spring is heated, it will transform to the stiffer austenite 
phase, and revert to its original uncompressed shape. 

J 

Fig. 1 shows the temperature response of an SMA 
spring with a bias force applied. 

II. MODELING TEMPERATLRE DRIFT 

To derive a relationship between the resonant 
frequency of a cavity and temperature, a relationship 
between temperature and geometry must be established. 
For metals, which are allowed to expand freely, linear 
expansion can be assumed. The normal strain is: 

E, = E, = E, = OAT (1) 

where a is the c&Iicient of thermal expansion (CTE) 
and dT is the temperature change. The volume will 
expand, and the shear stain will be zero [l]. For a specific 
application the unconstrained expansion assumption must 
be evaluated on a case-by-case basis. Factors effecting this 
assumption will include temperature range and mounting. 

A. Rectan@dar Resonators 

Assuming free expansion for a conductor-loaded 
rectangular resonator with dimensions b<a<d, it can 
easily be shown that the resonant frequency after a rise in 
temperature dris given by, iv: - 

fW)= ’ 

n i 
c a,*(l+cAT)” +doZ(l+a4T)* 

2a,d,(l+cziT)2 
(2) 

1259 

07803.7695-1/03/$17.00 Q 2003 IEEE 2003 IEEE M’M-S Digest 



valid for any conductor-loaded cavity that is allowed to 
expand freely regardless of its shape. 

where, f0 is the resonant frequency of the unperturbed 
resonator. 

It can be easily shown that these results are also valid 
for conductor-loaded cylindrical resonators. It is 
worthwhile to check the accuracy of the HFSS solution 
since we are dealing with an extremely small shift in 
resonator frequency. The simulated temperature drift 
results correlate extremely well with predicted results. 
The largest error in the predicted results is 0.0008% 

B. Other Cavity Resonators 

This temperature model (3) can be derived analytically 
for rectangular and cylindrical cavities. Simulations using 
HFSS suggest that this formula is valid for any conductor- 
loaded cavity of any shape. 

Equation (3) was tested using a reentrant coaxial 
resonator (Fig. 2a) [2] a metal disk resonator (Fig. 2b) 
[3], and a half cut resonator (Fig. 2c) [4]. No support 
structure was included in these simulations for simplicity. 

(cl 
Fig. 2. (a) Reentrant coaxial rewnater [Z], (b) Disk resenatcx 
[Z], (c) Half c”t resonator [4]. 

The results of these simulations are shown in Fig. 3. 
Again, the HFSS simulations conform to equation (3) 
extremely well. Here the maximum error incurred is 
0.0014%. 

The high correlation between the simulated and the 
predicted resonant frequencies for these resonators 
implies that the temperature model in equation (3) is 
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Fig. 3. Resonant frequency predictions for other resonators. 

III. IPEAL TUNING ROD BEHAVIOR 

Using a field perturbation model and the expected 
temperature drift of an uncompensated rewnator (3), an 
ideal tuning rod behavior can be derived. A tuning rod 
with this behavior will perfectly compensate for the 
temperature drift and result in a constant resonant 
fftXpetKy. 

A modified version of the small perturbation model for 
a rectangular cavity is used [5]. 

(4) 

The parameter s must be tit to simulated data for a 
particular resonator (s=2 for a rectangular cavity 
reso?ator). This model assumes that the perturbation 
response is linear, which is a reasonable assumption for 
the range of perturbation required for this application. 

The base frequency f0 from the modified field 
perturbation model (4) will depend on temperature if the 
cavity is expanding. This is due to the fact that the size of 
the unperturbed cavity is changing with temperature. The 
change in the base frequency f0 is predicted by the 
temperature drift model (3). The volume of the 
unperturbed cavity V,, will also change with temperature. 

If these results are substituted into the modified 
perturbation model (4), the resonant frequency of a cavity 
subjected to temperature changes and field perturbations 
can written as, 



f=f, 1 I-s AV 

(1+&T) Vo(l+aAT)’ 
‘(5) 

In equation (.5), the base frequencyf, corresponds to 
the resonant frequency of the cavity with no temperature 
change, and unperturbed by the tuning rod. 

For perfect temperature compensation, the frequency f 
for the perturbed cavity subject to temperature changes 
(5) should be a constantfd. Assuming that the tuning rod 
is a cylinder with a constant radius and variable length, 
the desired frequency is chosen as the resonant frequency 
of the unperturbed cavity at the maximum expected 
change in temperature H,, 

C-5) 

This choice for J$ means that the length of the 
tuning rod which perturbs the field will be zero at the 
maximum change in temperature AT,. A variable tuning 
rod length [JAT), and the a constant radius r replace the 
tuning rod volume AV, By solving for I/&“) the ideal 
tuning rod behavior can be derived. 

1, (AT) = 
V,a(AT, - AT)(l + o!AT)~ 

smZ(l + CCAT,,,) 
(7) 

Equation (7) describes the desired behavior of the 
tuning rod that will compensate perfectly for temperature 
drift. The rod length l, will be zero at the maximum 
temperature T,, Note that since the cceff?zient of thermal 
expansion a will be small, the field length I/ will be 
approximately linear, with respect to the change in 
temperature dT. By using a simple field perturbation 
model, it is possible to derive an analytical result, which 
is very convenient for design purposes. If a more accurate 
model is required, this same procedure can Lx followed 
using a polynomial field perturbation model, however the 
equation will need to be solved numerically. 

IV. MECHANICAL DESIGN CONSTRANTS 

Since it is unlikely that a compensation mechanism can 
be designed to follow the ideal tuning rod behavior 
exactly, it would be useful to derive a range of behavior 
that will meet specified design constraints. 

6= 4 
ATm f, 1O-6 [ppmpcl 

(8) 

The temperature drift in ppmPC (8) can be specified for 
a given application. In order to find the design boundary 
where the drift 6 is equal to the maximum temperature 
drift di, the,desired frequency (6) must be modified. 

(9) 

By repeating the pervious derivation, a limit on the 
temperature-length behavior of the tuning rod can be 
derived. 

1 =1 &(l+dAT,&10” 
fd f 

sm’(l+dir,) 
(10) 

A design envelope for the mechanical response of the 
tuning rod is shown in Fig. 4. If the temperature response 
of a particular tuning rod design lies within this design 
envelope, then the temperature drift will meet the 
constraint used in equation (IO) 
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Fig. 4. Mechanical design envelope 

With the use of Fig. 4, the mechanical design of the 
tuning rod can be divorced from the RF design. It also 
provides firm design specifications for the mechanical 
designer derived from temperature drift specifications. 

V. DESIGN AND RESULTS 

Because of the relatively narrow actuation range of an 
SMA spring (1@2o”c), several SMA springs in series 
will be required to compensate over a us&l temperature 
range. A diagram of the fall design is shown in Fig. 5b, 
while the fall design prototype is shown in Fig. 6. 

1261 



In order to prove that the concept of temperature 
compensation using shape memory alloys is feasible, 
SO”E preliminary experiments were performed. 
A mass biased tuning rod was designed (Fig. 5a). 

- 

(=I (b) 
Fig. 5. (a) Test design, (b) Full tuning rod design 

Fig. 6. SMA tuning rod prototype 

This design uses one spring that actuates over a IYC 
temperature range when heated. It was heated in a kiln 
from 22’C to 80°C. The results, shown in Fig. 7, show 
excellent temperature compensation over the actuation 
range of the SMA. 
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It should be mentioned that this experiment did not 
measure the resonant frequency as the cavity cooled. 
Because of the hysteresis in the SMA behavior it will be 
important to evaluate a design with bath heating and 
cooling. However, the hysteresis of the used SMA 
material is within the boundary outlined in Figure 4 and 
one would expect to get an overall temperature drift less 
than 2 ppm/C. The thermocouple used in this experiment 
is also only accurate to 31°C. This will add some 
uncertainty to the. results. 

This experiment shows that temperature compensation 
using SMA’s of cavity resonators is indeed plausible. A 
full prototype using this design would incorporate several 
SMA springs in series. This would allow compensation 
over a broader temperature range than that shown in Fig. 
m 

V. CONCLUStON 

This paper presented an analytically derived model for 
the temperature drift of conductor-loaded cavity 
resonators. This result was used to form a comprehensive 
method for designing SMA tuning rods capable of 
compensating for temperature drift. Experimental results 
were shown demonstrating that the concept of SMA 
temperature compensation is feasible. 
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