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Abstract — In this paper we present a method for
designing temperature compensated cavity resonators using
shape memory alloys (SMA’'s). This paper gives a formula
for the temperature drift of resonant frequency, which is
valid for any conductor-loaded cavity regardless of its shape,
This formula is combined with a field perturbation model
and used to derive mechanical design constraints from a
temperature drift constraint. Experimental results are given
that confirm the feasibility of the proposed design approach.

I. INTRODUCTION

Temperature drift is an important consideration when

. designing RF filters. To minimize drift, expensive high-

density materials such as invar are used to construct

resonators. Other materials such as aluminum have more

favorable electrical propertics and lower density, but
cannot be used because of high temperature drift.

The unique properties of shape memory alloys (SMA)
can be used to construct a tuning rod such that the field
perturbation is dependant on temperature. The consiraints
on the temperature drift of a resonator can be used to
derive constraints on the mechanical temperature
response of an SMA tuning rod.

In this paper we propose using a spring biased SMA
actuator spring to move a tuning rod inside a resonant
cavity. This design can provide the field perturbation
required to compensate for the effects of temperature
drift. Also, since this design is thermally actuated, there
is no added power consumption. It is then possible to
reduce temperature drift using a passive system while
adding little mass to the resonator.

II. SMA BEHAVIOR

Shape memory alloys {SMA) are materials that can
revert to a memorized shape when heated above some
threshold. For nickel-titanium alloys, this shape change is
the result of a phase transformation from martensite to
austenite. If and SMA compression spring is constructed,
and some bias force is applied (using a spring or a mass)
the spring will compress at low temperature. As the
spring is heated, it will transform to the stiffer austenite
phase, and revert to its original uncompressed shape.
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Fig. 1. SMA spring behavior

Fig. 1 shows the temperature response of an SMA
spring with a bias force applied.

II. MODELING TEMPERATURE DRIFT

To derive a relaticnship between the resonant
frequency of a cavity and temperature, a relationship
between temperature and geometry must be established.
For melals, which are allowed to expand freely, linear
expansion can be assumed. The normal strain is:

exzey:szzoaAT (1

where ¢ is the coefficient of thermal expansion (CTE)
and AT is the temperature change. The volume will
expand, and the shear stain will be zero [1]. For a specific
application the unconstrained expansion assumption must
be evaluated on a case-by-case basis, Factors effecting this
assumption will include temperature range and mounting.

A. Rectangular Resonators

Assuming free expansion for a conductor-loaded
rectangular resonator with dimensions b<a<d, it can
easily be shown that the resonant frequency after a rise in
temperature A7 is given by,

cya, (1+0ATY? +d,} (1 +aAT)? "

AT) =
JAT) 2a,d,(1+ oAT)?
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where, f, is the resonant frequency of the unperturbed
resonator.

It can be easily shown that these results are also valid .
for conductor-loaded cylindrical resonators. It is
worthwhile to check the accuracy of the HFSS solution
since we are dealing with an extremely small shift in
resonator frequency. The simulated temperature drift
results correlate extremely well with predicted results.
The largest error in the predicted results is 0.0008%.

B. Other Cavity Resonators

This temperature model {3) can be derived analytically
for rectangular and cylindrical cavities. Simulations using
HFSS suggest that this formula is valid for any conductor-
loaded cavity of any shape.

Equation (3) was tested using a reentrant coaxial
resonator (Fig. 2a) [2] a metal disk resonator (Fig. 2b)
[3], and a half cut resonator (Fig. 2¢) {4]. No support
structure was included in these simulations for simplicity.
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Fig. 2. (a) Reentrant coaxial resonator [2], (b) Disk resonator
[2], (c) Half cut resonator [4].

The results of these simulations are shown in Fig, 3.
Again, the HFSS simulations conform to equation (3)
extremely well. Here the maximum error incurred is
0.0014%.

The high correlation between the simulated and the
predicted resonant frequencies for these resonators
implies that the temperature model in equation (3) is

valid for any conductor-leaded cavity that is allowed 1o
expand freely regardless of its shape.
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Fig. 3. Resonant frequency predictions for other resonators.

II. IDEAL TUNING ROD BEHAVIOR

Using a field perturbation model and the expected
temperature drift of an uncompensated resonator (3), an
ideal wning rod behavior can be derived. A tuning rod
with this behavior will perfectly compensate for the
temperature drift and result in a constant resonant
frequency.

A modified version of the small perturbation model for
a rectangular cavity is used [5].

f=f __ AV
fO VD

The parameter s must be fit to simulated data for a
particular resonator {s=2 for a rectangular cavity
resonator). This model assumes that the perturbation
response is linear, which is a reasonable assumption for
the range of perturbation required for this application.

The base frequency f, from the modified field
perturbation model (4) will depend on temperature if the
cavity is expanding. This is due to the fact that the size of
the unperturbed cavity is changing with temperature. The
change in the base frequency f, is predicted by the
temperature drift model (3). The volume of the
unperturbed cavity V, will also change with temperature.

If these results are substituted into the modified
perturbation model (4), the resonant frequency of a cavity
subjected to temperature changes and field perturbations
can written as,

C)]

1260



AV ‘
s AR
V,(1+aAT) J

1
f"f"(1+aAT)(l_

In equation (5), the base frequency f, corresponds to
the resonant frequency of the cavity with no temperature
change, and unperturbed by the tuning rod.

For perfect temperature compensation, the frequency f
for the perturbed cavity subject to temperature changes
(5) should be a constant f;. Assuming that the tuning rod
is a cylinder with a constant radius and variable length,
the desired frequency is chosen as the resonant frequency
of the unperturbed cavity at the maximum expected
change in temperaturc A7,

1
fa —f{m) (6)

This choice for f; means that the length of the
tuning rod which perturbs the field will be zero at the
maximum change in temperature AT,,. A variable tuning
rod length [{AT), and the a constant radius r replace the
tuning rod volume AV. By solving for I{AT) the ideal
tuning rod behavior can be derived.

V (AT, - AT)(1+ aAT)’
sar*(l+oAT,)

Equartion (7) describes the desired behavior of the
tuning rod that will compensate perfectly for temperature
drift. The rod length I will be zero at the maximum
temperature 7,,, Note that since the coefficient of thermal
expansion ¢ will be small, the field length I will be
approximately linear with respect to the change in
temperature AT, By using a simple field perturbation
model, it is possible to derive an analytical result, which
is very convenient for design purposes. If a more accurate
model is required, this same procedure can be followed
using a polynomial field perturbation model, however the
equation will need to be solved numerically.

1, (aT) = @

IV. MECHANICAI DESIGN CONSTRAINTS

Since it is unlikely that a compensation mechanism can
be designed to follow the ideal tuning rod behavior
exactly, it would be useful to derive a range of behavior
that will meet specified design constraints.

5= &

—W lppm/*C] {8)
mJ d

The temperature drift in ppm/”C (8) can be specified for
a given application. In order to find the design boundary
where the drift 6 is equal to the maximum temperature
drift &, the desired frequency (6) must be modified.

- fd:fa[ 1
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By repeating the pervious derivation, a limit on the
temperature-length behavior of the tuning rod can be
derived.

V. (1+0AT)AT, 5,107
smi(l+af,)

[fd"_'lfi (10)

A design envelope for the mechanical response of the
tuning rod is shown in Fig. 4. If the temperature response
of a particular tuning rod design lies within this design
envelope, then the temperature drift will meet the
constraint used in equation (10)
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Fig. 4. Mechanical design envelope

With the use of Fig. 4, the mechanical design of the
tuning rod can be divorced from the RF design. It also
provides firm design specifications for the mechanical
designer derived from temperature drift specifications.

V. DESIGN AND RESULTS

Because of the relatively narrow actuation range of an
SMA spring (10-20°C), several SMA springs in series
wiil be required to compensate over a useful temperature
range. A diagram of the full design is shown in Fig. 5b,
while the full design prototype is shown in Fig. 6.
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In order to prove that the concept of temperature
compensation using shape memory alloys is feasible,
some preliminary  experiments were performed.
A mass biased tuning rod was designed {Fig. 5a).

MASS

(a) (b}
(a) Test design, (b) Full tuning rod design

Fig. 5.

Fig. 6. SMA tuning rod prototype

This design uses one spring. that actuates over a 15°C
temperature range when heated. It was heated in a kiln
from 22°C to 80°C. The results, shown in Fig. 7, show
excellent temperature compensation over the actuation
range of the SMA.
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Fig. 7. Resonant frequency compensated by SMA design
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It should be mentioned that this experiment did not
measure the resonant frequency as the cavity cooled.
Because of the hysteresis in the SMA behavior it will be
important to evaluate a design with both heating and
cooling. However, the hysteresis of the used SMA
material is within the boundary outlined in Figure 4 and
one would expect to get an overall temperature drift less
than 2 ppm/C. The thermocouple used in this experiment
is also only accurate to #£/°C. This will add some
uncertainty to the results.

This experiment shows that temperature compensation
using SMA’s of cavity resonators is indeed plausible. A
full prototype using this design would incorporate several
SMA springs in series. This would allow compensation

over a broader ternperature range than that shown in Fig.
7.

V. CONCLUSION

This paper presented an analytically derived model for
the ' temperature drift of conductor-loaded cavity
resonators. This result was used to form a comprehensive
method for designing SMA tuning rods capable of
compensating for temperature drift. Experimental results
were shown demonstrating that the concept of SMA
temperature compensation is feasible.
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